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NWO Project LeStoGram, Oct 2003 - Sept 2006

In this talk, we focus on Data-Oriented Parsing (DOP) and present first
research results of the NWO project Learning Stochastic Tree Grammars
from Treebanks. People involved: Prescher, Scha, and Sima’an (PI).

http://staff.science.uva.nl/ � simaan/LeStoGram.html

Stochastic Tree-Grammars (STGs) generalize PCFGs: Extended contextual
evidence is expressed in productions that are partial parse-trees. As a result,
STGs yield probability distributions of parse trees that can not be
modeled by the underlying PCFGs.

Parsers based on STGs currently achieve state-of-the-art performance

In the last few years, we observed an increasing interest in investigating
probabilistic versions of various STG formalisms like Tree-Adjoining
Grammars, Tree-Substitution Grammars, and Tree-Insertion Grammars.
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The Symbolic Backbone of DOP
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Tree derivations (Trees with hidden breakpoints):

D � t1 � � � t1 � t3� t7 � t4� t7 � t5� t7� t7 � and D � t2 � � � t2 � t6� t7 �
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The Probability Model of DOP

Fragment probability: Each fragment is assigned a real number π � t � such that
π induces probability distributions on the fragments having the same root label

π � t �� 0 and ∑
root � t ��� A

π � t � � 1 � for all t and A �

Derivation probability: The product of the derivation’s fragment probabilities

p � d � � ∏
t � T � d �

π � t �
Tree probability: The sum of the tree’s derivation probabilities

p � t � � ∑
d � D � t �

p � d �
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Estimating an Instance of DOP’s Probability Model

DOP’s probability model: Subset of the unrestricted probability model M � T �

on the set T of parse trees, parameterized by an assignment function π

MDOP � p � M � T �
�

�
�

�
�

p � t � � ∑
d � D � t �

∏
t � T � d �

π � t � and π: T � � 0 � 1 �

DOP comes with a genuine idea for estimating the fragment
probabilities: Data-driven calculation of π � t � using a given treebank!

Challenge: Instances p can often be generated by multiple assignments π.

First instantiation by Bod (1992): DOP1 requests π � t � being the relative
frequency of t in the sub-corpus of those fragments having the same root label.

Still unsolved fundamental problem: Which instance of DOP’s probability
model is the best one? Which assignment π: T � � 0 � 1 � is the best choice?
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Johnson (2002): “DOP1 is biased and inconsistent”
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Maximum-Likelihood Estimation (General Theory)

data
corpus of

model
probability

the corpus probability
maximizing

of the probability model
an instance

Maximum−Likelihood Estimation

Definition (Fisher, 1912): Maximum-likelihood estimates p̂ of a model M on a
corpus f satisfy

p̂ � argmax
p � M

∏
t � T

p � t �

f � t �

MLE is the most widely used estimation method:

Although there are theoretical problems concerning the existence,
uniqueness and computability of ML estimates...

...for most practical problems, MLE yields consistent estimates.
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Maximum-Likelihood Estimation for DOP

In general, MLE is equivalent to minimizing the relative entropy DKL ��� � �� � with
respect to the relative frequency p̃ : � � f �

� 1 � f of the types in the corpus

p̂ � argmin
p � M

DKL � p � � p̃ �

For most treebanks (condition: no subtree of a tree is itself a treebank tree),
the relative-frequency estimate is an instance of DOP’s probability
model p̃ � MDOP

Theorem The relative-frequency estimate p̃ is the unique ML estimate of
MDOP on each treebank f that satisfies the above weak condition.

The maximum-likelihood estimate of MDOP over-fits the treebank. The
consistency problem is solved at the cost of allocating all trees outside the
treebank a zero probability...
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Estimating DOP Instances: A Balancing Act

Starting with the comment by Johnson (2002) “DOP1 is biased and
inconsistent”, we are arriving now at...

...the full problem: Sound estimation of an instance of DOP’s probability model
seems to be a balancing act. When exploiting a given treebank, we have to look
for those estimates

� that are unbiased and consistent (DOP1 , MLE for MDOP )

and at the same time

� that do not over-fit the treebank (DOP1 , MLE for MDOP )

Prescher, Scha, Sima’an (CLIN 2003). Parameter Estimation and the Structure of the DOP Model 8



Estimating DOP Instances: LeStoGram’s Dual Vision

Vision “Empirical Research”: Stick with DOP’s probability model!
Incorporate instead into MLE or into other sound estimation methods

� smoothing techniques: The aim is to learn accurately those DOP
parameters that are insufficiently represented in the sparse treebank.

� pruning techniques: The aim is to drastically reduce DOP’s huge parameter
space by applying statistically sound parameter-selection procedures.

Vision “Fundamental Research”: Stick with MLE! Augment instead DOP’s
standard probability-model MDOP with constraints C

MDOP � C � � � p � MDOP � p satisfies the constraints C �

The aim is to find model constraints C such that standard MLE of MDOP � C �

results in consistent estimates that do not over-fit. The ambition of this research
effort is to gain a better theoretical insight into DOP estimation.
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LeStoGram: Past research...

...related to our empirical-research vision

The DOP fragments constitute a structured space of correlated events, which
can be exploited via discounting and back-off smoothing.
Reference: K. Sima’an and L. Buratto (2003). Back-off Parameter Estimation
for the DOP Model. In Proc. of the European Conf. on Machine Learning.

Split the given treebank: Read off the fragments from one part, but estimate
the fragment probabilities using the other part.
Reference: A. Zollmann (2003). A Consistent Estimation Method for Data-
Oriented Parsing. Master thesis, ILLC, University of Amsterdam.

...related to our fundamental-research vision

Initial experiments with constraints like: π � t � � 0 and t � s � � π � s � � 0

Prescher, Scha, Sima’an (CLIN 2003). Parameter Estimation and the Structure of the DOP Model 10



LeStoGram: Future Research

� So far, there is no parameter-estimation method for DOP which is known
to be unbiased and consistent, and which does not over-fit the treebank.
However

“...the existing parameter-estimation methods for DOP are known to be
inconsistent and biased towards either smaller or larger subtrees.”

is an incorrect statement (Thanks to Rens Bod, personal communication).

� Empirical research: The success or failure of the (as we think: promising)
experiments of Andreas Zollmann will be our starting point.

� Fundamental research: We are expecting great theoretical results by
investigating constrained DOP models in the standard MLE framework.
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